
 
250 

 
J. Eng. Technol. Sci., Vol. 47, No. 3, 2015, 250-265 

 
 

Received October 26th, 2014, Revised February 25th, 2015, Accepted for publication March 18th, 2015. 
Copyright ©2015 Published by ITB Journal Publisher, ISSN: 2337-5779, DOI: 10.5614/j.eng.technol.sci.2015.47.3.2 

The Effect of Surfactant Characteristics on IFT to 
Improve Oil Recovery in Tempino Light Oil Field 

Indonesia 

Boni Swadesi1,2, Taufan Marhaendrajana2, H.P. Septoratno Siregar2 &        
Leksono Mucharam2  

1Petroleum Engineering, Universitas Pembangunan Nasional “Veteran” Yogyakarta  
Jalan SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta 55283, Indonesia 

2Petroleum Engineering, Institut Teknologi Bandung 
Jalan Ganesha No 10, Bandung 40132, Indonesia 

Email: swadesi.boni@gmail.com 
 
 

Abstract. Water injection has been employed in the Tempino oil field since 
1996. The current oil recovery factor is 35% of OOIP. Even though the pressure 
is still high, the oil production rate has declined rapidly and the water cut is 
approaching 89%. In order to mobilize the oil from the reservoir more 
effectively, surfactant flooding is one of the solutions that can reduce residual oil 
saturation. Interaction between crude oil and compatible surfactant generates 
microemulsion, as an indication of low interfacial tension. Hence the oil is 
expected to move out of the pore throat easily. In this research, thirty types of 
surfactants were evaluated. The hydrophilic lipophilic balance (HLB) was 
calculated and the interfacial tension (IFT) with the reservoir fluid was 
measured. HLB criteria were established as an indicator of low IFT, which was 
then tested for Berea core flooding. The results indicate that an HLB between 
approximately 2.7 and 3.1 (on Davies’ Scale) or greater than 11.5 (on Griffin’s 
Scale) gives low IFT (~10-3 dynes/cm). This characteristic is possesed by 
surfactant ethoxy carboxylate with a linear hydrophobic structure. This 
surfactant produces a high incremental oil recovery according to Berea core 
flood tests. The AN2NS and AN3 surfactants recovered 90% and 86% of OOIP 
respectively.  

Keywords: ethoxy carboxylate; hydrophilic lipophilic balance (HLB); interfacial 
tension (IFT); light oil; recovery; surfactant flooding. 

1 0BIntroduction 
Many oil fields are being produced with water flooding as a secondary recovery 
process. Water flooding can produce a final oil recovery of around 35-50% of 
the original oil in place, leaving some remaining oil in the reservoir. After water 
flooding, the remaining oil could either be residual oil from the area swept by 
water or by-passed oil that could not be swept by the flooding. Surfactant 
flooding is an enhanced oil recovery (EOR) mechanism aimed at reducing the 
residual oil in water-swept zones of a reservoir. 
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Surfactants are usually organic compounds that are amphiphilic, meaning they 
are composed of a hydrocarbon chain (hydrophobic group, the ‘tail’) and a polar 
hydrophilic group (the ‘head’). Therefore, they are soluble in both organic 
solvents and in water. They adsorb or concentrate on the surface or fluid/fluid 
interface, altering the surface properties significantly; in particular, they reduce 
the surface tension or interfacial tension (IFT) [1]. Surfactants may be classified 
according to the ionic nature of the head group as anionic, cationic, nonionic, 
and zwitterionic [2]. 

The mechanism of surfactant flooding to improve oil recovery works by 
reducing the IFT to mobilize the residual oil. A low IFT can be obtained with a 
specific type of surfactant that is compatible with the reservoir and must also 
satisfy several other stringent requirements [3-5]. 

The hydrophilic-lipophilic balance (HLB) is one of the indicators used to 
characterize surfactants. This number indicates the relative tendency to solve in 
oil or water and thus the tendency to form water-in-oil or oil-in-water 
emulsions. Low HLB numbers are assigned to surfactants that tend to be more 
soluble in oil and to form water-in-oil emulsions. When the formation salinity is 
low, a low HLB surfactant should be selected [1]. The HLB value is also used 
as a primary designing and screening of surfactants [6]. The range of values is 
around 6-9 because this is roughly between W/O emulsifier and O/W emulsifier 
[7]. 

In this study the process design of surfactant flooding was investigated for 
application in the Tempino oil field at a temperature of 68°C. A screening 
method that considers the surfactant structure, the type of surfactant and the 
HLB was used to understand the complexities of surfactant mechanism. The 
information and evaluation obtained from the HLB value and the IFT test was 
then used to design and optimize the formulation of surfactant for the Tempino 
field. A laboratory test was described by Levitt, et al., which starts with the 
characterization and screening of surfactants and then advances to core flood 
testing with the best formulations [8,9]. These techniques were built on 
information from previous research. It was stated that a well-established 
relationship exists between the micro-emulsion formation, phase behavior and 
IFT. It is common in the industry to screen surfactants and their formulation for 
low IFT through laboratory-based oil/water phase behavior testing [10]. 

2 Experimental Procedure 
In this study, an experiment was performed to analyze the relationship between 
the characteristics of the surfactant, phase behavior and IFT, and to analyze 
their influence on the oil recovery by using a surfactant with low IFT through a 
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core flood system. All of the experiments were done using brine and oil from 
the Tempino field and the Berea core. The characteristics of the oil and brine 
from the Tempino field are shown in Table 1 and 2.  

Table 1 Characteristics of oil from Tempino field. 

Table 2 Characteristics of brine from Tempino field. 

Analysis Parameter Tempino Brine Value 

TDS (ppm) 15540 

Salinity (ppm) 8670 

pH 8.571 

Na+ (ppm) 3906 

K+ (ppm) 21.22 

Ca2+ (ppm) 78.96 

Mg2+ (ppm) 109 

Cl- (ppm) 5244 

CO3
2- (ppm) 411 

SO4
2- (ppm) 30.66 

Total Organic Carbon (TOC) (ppm) 999 

2.1 Surfactant Characterization 
The chemical structure of the surfactant was determined by using FTIR (Fourier 
Transform Infra Red) spectroscopy, NMR (Nuclear Magnetic Resonance) 
spectroscopy and mass spectroscopy (MS). The results from this analysis 
indicate the type and structure of the surfactant. 

The characteristics of oil from Tempino Field Tempino (TPN) oil value 

SARA: 
Saturated 
Aromatics 

Resins 
Asphaltenes 

 
71.60 % 
25.49 % 
2.14 % 
0.78 % 

EACN (Equivalent Alkane Carbon Number) 8.29 

TAN (Total Acid Number) - 

Viscosity 0.90 cP (66°C) 

API Gravity 42 
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2.2 HLB calculation 
The HLB is determined by calculating values for the different regions of the 
molecule, as described by Griffin [11,12]. Other methods have been suggested, 
notably by Davies [13]. Griffin’s equation to calculate HLB for nonionic 
surfactants is 

 HLB = 20MWh/MW                    (1) 

where MWh is the molecular mass of the hydrophilic portion of the molecule 
and MW is the molecular mass of the whole molecule, giving a result on an 
arbitrary scale of 0 to 20. An HLB value of 0 corresponds to a completely 
hydrophobic molecule and a value of 20 corresponds to a molecule made up 
completely of hydrophilic components. The HLB value can be used to predict 
the following surfactant properties: 

1. A value from 0 to 3 indicates an antifoaming agent. 
2. A value from 4 to 6 indicates a W/O emulsifier. 
3. A value from 7 to 9 indicates a wetting agent. 
4. A value from 8 to 18 indicates an O/W emulsifier. 
5. A value from 13 to 15 is typical of detergents. 
6. A value of 10 to 18 indicates a solubilizer or hydrotrope. 

In 1957, Davies suggested a method for calculating a value based on the 
chemical groups of the molecule. The advantage of this method is that it takes 
into account the effect of strongly and less strongly hydrophilic groups. The 
equation is 

 HLB = 7 + mHh-nHl       (2) 

where m is the number of hydrophilic groups in the molecule, Hh is the value of 
the hydrophilic groups, n is the number of lipophilic groups in the molecule, 
and Hl is the value of the lipophilic groups. For ethoxylated amphiphiles, the 
HLB is one-fifth the weight of the ethylene oxide portion of the molecule [14]. 

2.3 Solubility Test 
Precipitation during flooding has to be avoided in order to guarantee the 
performance of the process. Therefore good solubility of the surfactants at the 
reservoir temperature and salinity is essential. All solubility tests were 
performed with a total dissolved salinities value of 15000 ppm and a 
temperature of 68°C at reservoir conditions. If no precipitate was formed within 
2 days, the surfactants were used for further investigation. 
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2.4 Phase Behavior Test 
Phase behavior studies were performed to assess the potential of each surfactant 
sample at the salinity and temperature of the Tempino field. The surfactants 
were dissolved in Tempino brine. 10 ml of oil was added to 10 ml of the 
surfactant solution. The samples were mixed in small 5 ml pipettes and the top 
of the pipettes was sealed using a flame. The formation of microemulsion was 
observed visually to look for the Winsor type III phase at 68°C. The phase 
behavior of microemulsion can be divided into three classes: lower-phase 
microemulsion, upper-phase microemulsion and middle-phase microemulsion, 
called Winsor type III. Figure 1 illustrates the relationship between salinity and 
phase behavior. 

 
Figure 1 Three Types of Microemulsion and the Effect of Salinity on Phase 
Behavior [1]. 

2.5 IFT Test 
The IFTs were measured using a TX 500C spinning drop tensiometer. The 
surfactants were added to the brines in a concentration of 2% w/w. The 
surfactant solution was brought into contact with the oil phase. IFT values were 
measured during 30 minutes. The average IFT value was taken as the result. 
Equilibration and measurement were performed at 68°C, which is the Tempino 
field temperature. 
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2.6 Core Flooding 
The coreflooding system was set vertically to obtain oil recovery after injecting 
surfactant into the core. A syringe pump with 50-ml syringe was used to inject 
the fluids (brine, oil, and surfactants). A nitrogen pump was used to maintain 
the confining (overburden) pressure inside the core holder. To establish the 
required reservoir condition, the heated mantel around the core holder was used 
that was connected to a temperature controller. The effluent fluids were 
collected in a small 5 ml tube and the amount of the recovered oil was 
measured.  

3 Result and Discussion 

3.1 Surfactant Characterization 
In this study, we have examined 30 samples of surfactants, which were provided 
by several domestic commercial suppliers and from suppliers outside Indonesia. 
The collected surfactants are classified as ethoxylates, carboxylate, sulfate, 
sulfonate, and ethoxycarboxylate (Table 3). The hydrophilic-lipophilic balance 
(HLB) value can be estimated from the structure of each surfactant. By 
determining the HLB value, the interaction strength between the head group 
with the brine and the tail group with the oil may be inferred. For a low IFT, an 
equal interaction strength between the head group with the brine and the tail 
group with the oil is needed [15]. 

Table 3 Samples of Surfactant. 

Samples of 
Surfactant 

Structure of Chemical Type of 
Surfactants Hydrophilic Hydrophobic 

9B Derivative palm oil 
ethoxylate  

Nonionic ethoxylate linear olefin 

9Bl1 Blending of palm oil 
ethoxylates 

Blending 
Nonionic 

ethoxylate linear 

9BNS Derivative palm oil 
ethoxylate 

Nonionic ethoxylate linear 

AN1 Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 

AN2 Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 

 
AN3 

Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 

AN4 Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 

AN1NS Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 

AN2NS Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 
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Samples of 
Surfactant 

Structure of Chemical Type of 
Surfactants Hydrophilic Hydrophobic 

AN4NS Blending ethoxylate and 
ethoxy-carboxylate 

Nonionic + 
Anionic 

ethoxy-
carboxylate 

linear 

21 Branched alkyl sulfate Anionic sulfate branch 

9A Derivative palm oil 
ethoxylate 

Nonionic ethoxylate linear 

9F Derivative palm oil 
ethoxylate 

Nonionic ethoxylate linear 

9G Derivative palm oil 
ethoxylate 

Nonionic ethoxylate linear 

9Bl2 Blending of palm oil 
ethoxylates  

Nonionic ethoxylate linear 

9D2 Derivative palm oil 
ethoxylate 

Nonionic ethoxylate linear 

24B Coconut oil ethoxylate Nonionic ethoxylate saturated, 
unsaturated 

C Internal olefin sulfonate 
C19-23 

Anionic sulfonate olefin 

5 Sodium alkyl benzene 
sulfonate 

Anionic sulfonate linear, aromatic 

20 Branched alkane sulfonate Anionic sulfonate branch 

22 Branched alkyl 
sulfosuccinate 

Anionic sulfosuccinate branch 

5A Derivative sodium alkyl 
benzene sulfonate 

Anionic sulfonate linear, aromatic 

5B Derivative sodium alkyl 
benzene sulfonate 

Anionic sulfonate linear, aromatic 

31B Derivate of benzene 
sulfonate 

Anionic sulfonate linear, aromatic 

31C Derivate of benzene 
sulfonate 

Anionic sulfonate linear, aromatic 

31D Derivate of benzene 
sulfonate 

Anionic sulfonate linear, aromatic 

31E Derivate of benzene 
sulfonate 

Anionic sulfonate linear, aromatic 

13 Polynaphtalene sulfonate Anionic sulfonate aromatic 

19 Linear olefin sulfonate Anionic sulfonate linear olefin 

27 Carboxylates surfactant Anionic carboxylate Linear 

The HLB value was computed using empirical approaches, i.e. by two methods, 
proposed by Davies and Griffin respectively. By using Davies’ method, the 
HLB was computed to give values ranging from 1.5 to 38.1, while Griffin’s 
method yielded an HLB from 3.3 to 11.7 (on a scale of 0 to 20). The results 
from both methods are shown in Table 4. The value of IFT is shown in Table 5. 
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Table 4 Calculation of HLB. 

Samples of 
Surfactant 

DAVIES GRIFFIN HLB 
mHh nHl MWh MW Davies Griffin 

9B 10.4 14.725 325 564 2.7 11.5 

9Bl1 10.4 14.725 325 564 2.7 11.5 

9BNS 10.4 14.725 325 564 2.7 11.5 

AN1 11.2 14.725 353 592 3.1 11.7 

AN2 11.2 14.725 353 592 3.1 11.7 

AN3 11.2 14.725 353 592 3.1 11.7 

AN4 11.2 14.725 353 592 3.1 11.7 

AN1NS 11.2 14.725 353 592 3.1 11.7 

AN2NS 11.2 14.725 353 592 3.1 11.7 

AN4NS 11.2 14.725 353 592 3.1 11.7 

21 38.7 7.6 96 321 38.1 6 

9A 10.4 14.725 325 564 2.7 11.5 

9F 10.4 14.725 325 564 2.7 11.5 

9G 10.4 14.725 325 564 2.7 11.5 

9Bl2 10.4 14.725 325 564 2.7 11.5 

9D2 10.4 14.725 325 564 2.7 11.5 

24B 10.4 15.2 325 578 2.2 11.3 

C 11 9.975 81 376 8.0 4.3 

5 11.2 14.725 353 592 9.9 4.9 

20 11 7.6 81 306 10.4 5.3 

22 15.5 7.6 198 423 14.9 9.4 

5A 11 8.075 81 320 9.9 5.1 

5B 11 8.075 81 320 9.9 5.1 

31B 11 8.075 81 320 9.9 5.1 

31C 11 8.075 81 320 9.9 5.1 

31D 11 8.075 81 320 9.9 5.1 

31E 11 8.075 81 320 9.9 5.1 

13 22 9.5 162 414 19.5 7.8 

19 11 7.6 81 306 10.4 5.3 

27 2.1 7.6 45 270 1.5 3.3 
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Table 5 IFT Measurements.  

Samples of 
Surfactant 

HLB IFT 
(mN/m) Davies Griffin 

9B 2.7 11.5 0.0019 

9Bl1 2.7 11.5 0.0021 

9BNS 2.7 11.5 0.0034 

AN1 3.1 11.7 0.0037 

AN2 3.1 11.7 0.0079 

AN3 3.1 11.7 0.0011 

AN4 3.1 11.7 0.0021 

AN1NS 3.1 11.7 0.0038 

AN2NS 3.1 11.7 0.0018 

AN4NS 3.1 11.7 0.0034 

21 38.1 6 0.0485 

9A 2.7 11.5 0.0529 

9F 2.7 11.5 0.0529 

9G 2.7 11.5 0.0354 

9Bl2 2.7 11.5 0.0337 

9D2 2.7 11.5 0.0119 

24B 2.2 11.3 0.0559 

C 8.0 4.3 0.0485 

5 9.9 4.9 0.4170 

20 10.4 5.3 0.5160 

22 14.9 9.4 0.1640 

5A 9.9 5.1 0.4170 

5B 9.9 5.1 0.4960 

31B 9.9 5.1 0.2460 

31C 9.9 5.1 0.2450 

31D 9.9 5.1 0.3160 

31E 9.9 5.1 0.3470 

13 19.5 7.8 12.9400 

19 10.4 5.3 1.8000 

27 1.5 3.3 1.0100 

In the case of Tempino oil and brine, the optimum HLB value is between 2.7 
and 3.1 (on Davies’ Scale), where the IFT is the lowest (Figure 2). In this HLB 
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range, the water-surfactant interaction and oil-surfactant interaction are 
approximately equal, which produces the lowest interfacial tension. At HLB 
values greater than 3.1, there is less water-surfactant interaction than oil-
surfactant interaction. Conversely, at HLB values smaller than 2.7, water-
surfactant interaction is greater than oil-surfactant interaction. This observation 
deviates from Davies’ proposal, where an equal interaction between water-
surfactant and oil-surfactant is expected at an HLB of about 7. 

 
Figure 2 Plot HLB versus IFT. 

On Griffin’s scale, the lowest HLB occured at about 11.7. This is relatively 
close to the expected value of 10 obtained from Griffin’s formula for the 
balance of hydrophilic and lipophilic groups. However, the balance value of 10 
is roughly approximate, as it is only based on the surfactant properties and it 
does not consider the properties of brine and oil.  

Base on the results above, Griffin’s formula may be used as an indicator for 
surfactant formulation. Meanwhile, further modification and calibration is 
needed for Davies’ formula to be used for the same purpose.  
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3.2 Solubility and Phase Behavior Test 
All surfactant samples gave a one-phase solution when mixed with reservoir 
brine. Furthermore, all samples were tested for their compatibility with reservoir 
oil by conducting a phase behavior test. It can be shown that a surfactant sample 
can form microemulsion of Winsor type III (Table 6), but there are several 
surfactants that show an increasing microemulsion viscosity and form a turbid 
solution at the water phase from visual observation. This can be caused by the 
hydrophobic group having a linear straight chain so the micelles formed are 
very compact and rigid.  

Table 6 Observation of Phase Behavior. 

Samples of 
Surfactant 

Structure of 
Chemical 

Aqueous 
Stability 

Phase 
Behavior 

Viscosity of 
Emulsion 

9B Derivative palm oil 
ethoxylate One Phase Type III Not Viscous 

9Bl1 Blending of palm oil 
ethoxylates One Phase Type III Not Viscous 

9BNS Derivative palm oil 
ethoxylate One Phase Type III Not Viscous 

AN1 Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase 
Type III Viscous 

AN2 Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase 
Type III Not Viscous 

AN3 Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase 
Type III Viscous 

AN4 Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase 
Type III little Viscous 

AN1NS Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase 
Type III Not Viscous 

AN2NS Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase Type III Not Viscous 

AN4NS Blending ethoxylate 
and ethoxy-
carboxylate 

One Phase Type III Not Viscous 

21 Branched alkyl 
sulfate 

One Phase Type III Not Viscous 

9A Derivative palm oil 
ethoxylate 

One Phase Type III Viscous 

9F Derivative palm oil 
ethoxylate 

One Phase Type III Not Viscous 

9G Derivative palm oil 
ethoxylate 

One Phase Type III Not Viscous 
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Samples of 
Surfactant 

Structure of 
Chemical 

Aqueous 
Stability 

Phase 
Behavior 

Viscosity of 
Emulsion 

9Bl2 Blending of palm oil 
ethoxylates  

One Phase Type III Not Viscous 

9D2 Derivative palm oil 
ethoxylate 

One Phase Type III Viscous 

24B Coconut oil 
ethoxylate  

One Phase Type III Not Viscous 

C Internal olefin 
sulfonate C19-23 

One Phase Type III Not Viscous 

5 Sodium alkyl benzene 
sulfonate 

One Phase Type III Not Viscous 

20 Branched alkane 
sulfonate 

One Phase Type III Not Viscous 

22 Branched alkyl 
sulfosuccinate 

One Phase Type III Not Viscous 

5A Derivative sodium 
alkyl benzene 
sulfonate 

One Phase Type III Little Viscous 

5B Derivative sodium 
alkyl benzene 
sulfonate 

One Phase Type III Little Viscous 

31B Derivate of benzene 
sulfonate 

One Phase Type III Viscous 

31C Derivate of benzene 
sulfonate 

One Phase Type III Viscous 

31D Derivate of benzene 
sulfonate 

One Phase Type III Viscous 

31E Derivate of benzene 
sulfonate 

One Phase Type III Viscous 

13 Polynaphtalene 
sulfonate 

One Phase Type III Not Viscous 

19 Linear olefin 
sulfonate 

One Phase Type III Not Viscous 

27 Carboxylates 
surfactant One Phase Type III Not Viscous 

3.3 Interfacial Tension Test (IFT) 
The surfactants that successfully passed the phase behavior test were evaluated 
by mixing them with brine and oil from the Tempino oil field. Tempino oil is a 
light oil with a gravity of 42 degree API. The surfactant concentration used in 
this study was 2% w/w. In Figure 2, the IFT values are displayed as a function 
of the HLB for both Davies’ and Griffin’s method. On Davies’ scale, the 
surfactant samples with the lowest IFT had an HLB value of 3.1. These 
surfactants were AN3 and AN2NS, which have type ethoxy carboxylate and 
their hydrophobic group structure is linear. There were three other surfactants 
with an HLB of 2.7 that also yielded a low IFT (~10-3 mN/m). Their structure is 
composed of ethoxylate and linear olefin chains as hydrophobic groups (9B), a 
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blending of ethoxylated surfactant (9Bl1), and the surfactant with ethoxylate 
and a linear olefins hydrophobic group but without co-solvent (9BNS). The 
existence of an olefin group has the effect of the surfactant tail group to interact 
more strongly with the oil. A low IFT is achieved at HLB values between 2.7 
and 3.1. According to Davies’ formula, the value should be around 7. This 
suggests that further calibration needs to be applied to Davies’ formula in order 
to be used as an indicator for designing ultra-low IFT surfactants. With Griffin’s 
method, the lowest IFT values (0.0011 mN/m and 0.0018 mN/m) were found at 
an HLB value of 11.7. This is somewhat closer to the value of 10 predicted by 
Griffin’s formula.  
 
It can be seen that the structure of surfactant that gives a low IFT value for the 
Tempino field is a blend of nonionic ethoxylate surfactant and anionic 
carboxylate surfactant with a linear chain as the hydrophobic group. 

3.4 Core Flooding 
The surfactant samples that gave the lowest IFT values were tested in core flood 
tests. In this study, the surfactant samples AN3 and AN2NS, with IFT values 
0.0011 mN/m and 0.0018 mN/m respectively, were tested for core flooding 
using two Berea cores. Both surfactants showed good aqueous stability and had 
middle phase microemulsion (Winsor type III). The permeability of the Berea 
cores was 261.95 mD and 250.99 mD respectively. The temperature during the 
core flooding experiment was 68°C.  
 
First the core was saturated by brine. Oil was then injected displacing the water 
until water was no longer produced. To preserve the oil saturation, the treated 
core was aged in oil for about 7 days at reservoir temperature. For oil recovery 
evaluation, the saturated core was injected with brine (waterflooding) for about 
2.3 PV (pore volumes), at which no more oil was produced. The average oil 
recovery was 55% (Figure 3), which is a normal oil recovery by water flooding 
in sandstones with permeability around 250 mD. 

Table 7 Recovery Factor. 

Core Permeability 
(mD) 

Porosity 
(%) Surfactant 

Total Recovery (%) 
Water 

Flooding 
Surfactant 
Flooding 

Core 1 261.95 23.41 AN2NS 53 90 

Core 2 250.99 21.04 AN3 58 86 
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Figure 3 Plot of PV versus RF. 

This was followed by continuous injection of surfactant solution for a total of 5 
PV. The oil recovered during this stage was also recorded. As shown in Table 7 
and Figure 2, the incremental oil recovery by the two surfactants (AN2NS and 
AN3) was quite high. Further examination showed that the incremental oil 
recovery by surfactant AN2NS (37%) was higher than the incremental oil 
recovery by surfactant AN3 (28%). This seems contrary to their IFT (a lower 
IFT value is expected to yield a higher incremental oil recovery). This can be 
attributed to other factors, such as core properties, that affect the oil recovery. 
Other mechanisms, such as the wettability effect, may need to be further 
investigated. 

4 Conclusions 
In this study, 30 samples of surfactant were compared using the HLB, phase 
behavior test, IFT and the core flooding test. The phase behavior tests were 
performed before applying the surfactant for enhanced oil recovery in order to 
find the optimal surfactant parameters. All of the tests were done for a 
surfactant concentration of 2 wt%. 

The HLB values from Davies’ and Griffin’s methods in general showed 
relatively consistent behaviour for its relationship with the IFT. On Davies’ 
scale, an ultra-low IFT was achieved at an HLB between 2.7 and 3.1. According 
to Davies’ formula this value should be around 7, where hydrophilic and 
lipophilic equal balance occurs. This suggests that further calibration needs to 
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be applied to Davies formula in order to be able to use it as an indicator for 
designing ultra-low IFT surfactants. 

On Griffin’s scale, the lowest HLB occured at about 11.7. This is relatively 
close to the expected value of 10 obtained from Griffin’s formula for the 
balance of hydrophilic and lipophilic. Griffin’s formula, therefore, may be used 
as an indicator for surfactant formulation.  

Among the thirty tested samples, surfactants AN2NS and AN3 (mixes of non-
ionic ethoxylate and anionic carboxylate surfactants) yielded the lowest IFT for 
oil-brine from the Tempino field. In the core flooding test, an injection of 
2 wt% AN2NS surfactant solution into the core showed that oil recovery 
increased by 37% on top of waterflooding (total 90%), whereas the recovery by 
injecting AN3 surfactant increased oil recovery by 28% on top of waterflooding 
(total 86%). This significantly higher incremental oil recovery is correlable with 
the ultra-low IFT of the two surfactants. 
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Nomenclature 
MWh =  the molecular mass of the hydrophilic portion of the molecule 
MW =  the molecular mass of the whole molecule 
m =  the number of hydrophilic groups in the molecule 
Hh =  the value of the hydrophilic groups 
n =  the number of lipophilic groups in the molecule 
Hl =  the value of the lipophilic groups 
PV =  pore volume 
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